One- and two-photon induced polymerization of methylmethacrylate using colloidal CdS semiconductor quantum dots.

نویسندگان

  • Nicholas C Strandwitz
  • Anzar Khan
  • Shannon W Boettcher
  • Alexander A Mikhailovsky
  • Craig J Hawker
  • Thuc-Quyen Nguyen
  • Galen D Stucky
چکیده

The development of one- and two-photon induced polymerization using CdS semiconductor quantum dots (QDs) and amine co-initiators to promote radical generation and subsequent polymerization is presented. Two-photon absorption (TPA) cross-section measurements, linear absorption, and transmission electron microscopy are used to characterize the QDs. The effectiveness of the co-initiators in increasing the efficiency of photopolymerization (polymer chains formed per excitation) is examined. Triethylamine was observed to be most effective, yielding quantum efficiencies of initiation of >5%. The interactions between the co-initiators and QDs are investigated with steady-state photoluminescence and infrared spectroscopies. Possible initiation mechanisms are discussed and supported by electrochemical data. Making use of the surface chemistry developed here and the large QD TPA cross-sections, two-photon induced polymerization is demonstrated. The large TPA cross-sections coupled with modest quantum efficiencies for initiation reveal the unique potential of molecularly passivated QDs as efficient two-photon photosensitizers for polymerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical, Thermal and Structural Properties of CdS Quantum Dots Synthesized by A Simple Chemical Route

The present work deals with the synthesis and characterization of CdS nanoparticles with good thermal stability and optical properties by a novel and simple synthetic route. The nanoparticles were synthesized via chemical precipitation method in a single reaction vessel under ambient conditions. The prepared CdS nanoparticles were compared with the bulk CdS. The Optical properties were determin...

متن کامل

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...

متن کامل

Amplified spontaneous emission and lasing in colloidal nanoplatelets.

Colloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/CdS core/crown NPLs having different CdS crown size with one- and two-photon absorption pumping. The core/crown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 26  شماره 

صفحات  -

تاریخ انتشار 2008